Planar supersymmetric quantum mechanical systems with separable spectral problem in curvilinear coordinates are analyzed in full generality. We explicitly construct the supersymmetric extension of the Euler/Pauli Hamiltonian describing the motion of a light particle in the field of two heavy fixed Coulombian centers. We shall also show how the SUSY Kepler/Coulomb problem arises in two different limits of this problem: either, the two centers collapse in one center - a problem separable in polar coordinates -, or, one of the two centers flies to infinity - to meet the Coulomb problem separable in parabolic coordinates.