We study temperature evolution of spin accumulation signals obtained by the three-terminal Hanle effect measurements in a nondegenerated silicon channel with a Schottky-tunnel-barrier contact. We find the clear difference in the temperature-dependent spin signals between spin-extraction and spin-injection conditions. In a spin-injection condition with a low bias current, the magnitude of spin signals can be enhanced despite the rise of temperature. For the interpretation of the temperature-dependent spin signals, it is important to consider the sensitivity of the spin detection at the Schottky-tunnel-barrier contact in addition to the spin diffusion in Si.