Fermi Surface Reconstruction by Dynamic Magnetic Fluctuations


الملخص بالإنكليزية

We demonstrate that nearly critical quantum magnetic fluctuations in strongly correlated electron systems can change the Fermi surface topology and also lead to spin charge separation (SCS) in two dimensions. To demonstrate these effects we consider a small number of holes injected into the bilayer antiferromagnet. The system has a quantum critical point (QCP) which separates magnetically ordered and disordered phases. We demonstrate that in the physically interesting regime there is a magnetically driven Lifshitz point (LP) inside the magnetically disordered phase. At the LP the topology of the hole Fermi surface is changed. We also demonstrate that in this regime the hole spin and charge necessarily separate when approaching the QCP. The considered model sheds light on generic problems concerning the physics of the cuprates.

تحميل البحث