We use computer simulations to investigate the stability of a two-component polymer brush de-mixing on a curved template into phases of different morphological properties. It has been previously shown via molecular dynamics simulations that immiscible chains having different length and anchored to a cylindrical template will phase separate into striped phases of different widths oriented perpendicularly to the cylindrical axis. We calculate free energy differences for a variety of stripe widths, and extract simple relationships between the sizes of the two polymers, N_1 and N_2, and the free energy dependence on the stripe width. We explain these relationships using simple physical arguments based upon previous theoretical work on the free energy of polymer brushes.