Tidal Signatures in the Faintest Milky Way Satellites: The Detailed Properties of Leo V, Pisces II and Canes Venatici II


الملخص بالإنكليزية

We present deep wide-field photometry of three recently discovered faint Milky Way satellites: Leo V, Pisces II, and Canes Venatici II. Our main goals are to study the structure and star formation history of these dwarfs; we also search for signs of tidal disturbance. The three satellites have similar half-light radii ($sim 60-90$ pc) but a wide range of ellipticities. Both Leo V and CVn II show hints of stream-like overdensities at large radii. An analysis of the satellite color-magnitude diagrams shows that all three objects are old ($>$ 10 Gyr) and metal-poor ([Fe/H] $sim -2$), though neither the models nor the data have sufficient precision to assess when the satellites formed with respect to cosmic reionization. The lack of an observed younger stellar population ($la 10$ Gyr) possibly sets them apart from the other satellites at Galactocentric distances $ga 150$ kpc. We present a new compilation of structural data for all Milky Way satellite galaxies and use it to compare the properties of classical dwarfs to the ultra-faints. The ellipticity distribution of the two groups is consistent at the $sim$2-$sigma$ level. However, the faintest satellites tend to be more aligned toward the Galactic center, and those satellites with the highest ellipticity ($ga 0.4$) have orientations ($Delta theta_{GC}$) in the range $20^{circ} lesssim Delta theta_{GC} lesssim 40^{circ}$. This latter observation is in rough agreement with predictions from simulations of dwarf galaxies that have lost a significant fraction of their dark matter halos and are being tidally stripped.

تحميل البحث