A first-order magnetic phase transition near 15 K with novel magnetic-field-induced effects in Er5Si3


الملخص بالإنكليزية

We present magnetic characterization of a binary rare-earth intermetallic compound Er5Si3, crystallizing in Mn5Si3-type hexagonal structure, through magnetization, heat-capacity, electrical resistivity, and magnetoresistance measurements. Our investigations confirm that the compound exhibits two magnetic transitions with decreasing temperature, first one at 35 K and the second one at 15 K. The present results reveal that the second magnetic transition is a disorder-broadened first-order transition, as shown by thermal hysteresis in the measured data. Another important finding is that, below 15 K, there is a magnetic-field-induced transition with a hysteretic effect with the electrical resistance getting unusually enhanced at this transition and the magnetorsistance (MR) is found to exhibit intriguing magnetic-field dependence indicating novel magnetic phase-co-existence phenomenon. It thus appears that this compound is characterized by interesting magnetic anomalies in the temperature-magnetic-field phase diagram.

تحميل البحث