Universal scaling of Efimov resonance positions in cold atom systems


الملخص بالإنكليزية

Recent cold atom experiments report a surprising universal scaling of the first Efimov resonance position a_{-}^1 by the two-body van der Waals length r_{vdW}. The ratio C=-a_{-}^1/r_{vdW}=8.5~9.5 for identical particles appears to be a constant regardless of the atomic spin configuration, the Feshbach resonance employed to tune the scattering length, and even the atomic species, with K-39 being the only exception. This result indicates that the Efimov energy structure is insensitive to the details of the short range potential. We suggest that the universality results from the quantum reflection of the Efimov wavefunciton by the short-range molecular potential. Assuming Born-Oppenheimer approximation and strong quantum reflection, we obtain an analytic result of C=9.475... for three identical particles. We suspect the exceptional case of K-39 is a result of resonant coupling between the Efimov state and a short-range molecular state.

تحميل البحث