Microlensing of Kepler Stars as a Method of Detecting Primordial Black Hole Dark Matter


الملخص بالإنكليزية

If the Dark Matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASAs Kepler search for extra-solar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 lightcurves would result in large numbers of detectable events for PBHs in the mass range $5 ten{-10}msun$ to $aten{-4}msun$. Non-detection of these events would close almost two orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects.

تحميل البحث