Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest are the dependence of the throughput on the speed of agent movement and communication range. Our computations reveal a hierarchical dependence for the former while, for the latter, we find an algebraic power law between the throughput and the communication range with an exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.