In this work we study a modified version of the two-dimensional Sznajd sociophysics model. In particular, we consider the effects of agents reputations in the persuasion rules. In other words, a high-reputation group with a common opinion may convince their neighbors with probability $p$, which induces an increase of the groups reputation. On the other hand, there is always a probability $q=1-p$ of the neighbors to keep their opinions, which induces a decrease of the groups reputation. These rules describe a competition between groups with high reputation and hesitant agents, which makes the full-consensus states (with all spins pointing in one direction) more difficult to be reached. As consequences, the usual phase transition does not occur for $p<p_{c} sim 0.69$ and the system presents realistic democracy-like situations, where the majority of spins are aligned in a certain direction, for a wide range of parameters.