We have derived the coefficients of the highest three 1/x-enhanced small-x logarithms of all timelike splitting functions and the coefficient functions for the transverse fragmentation function in one-particle inclusive e^+e^- annihilation at (in principle) all orders in massless perturbative QCD. For the longitudinal fragmentation function we present the respective two highest contributions. These results have been obtained from KLN-related decompositions of the unfactorized fragmentation functions in dimensional regularization and their structure imposed by the mass-factorization theorem. The resummation is found to completely remove the huge small-x spikes present in the fixed-order results for all quantities above, allowing for stable results down to very small values of the momentum fraction and scaling variable x. Our calculations can be extended to (at least) the corresponding as^n ln^(2n-l) x contributions to the above quantities and their counterparts in deep-inelastic scattering.