Using Gauss-Manin derivatives of normal functions, we arrive at some remarkable results on the non-triviality of the transcendental regulator for $K_m$ of a very general projective algebraic manifold. Our strongest results are for the transcendental regulator for $K_1$ of a very general $K3$ surface. We also construct an explicit family of $K_1$ cycles on $H oplus E_8 oplus E_8$-polarized $K3$ surfaces, and show they are indecomposable by a direct evaluation of the real regulator. Critical use is made of natural elliptic fibrations, hypersurface normal forms, and an explicit parametrization by modular functions.