We review the task of aligning simple models for language dynamics with relevant empirical data, motivated by the fact that this is rarely attempted in practice despite an abundance of abstract models. We propose that one way to meet this challenge is through the careful construction of null models. We argue in particular that rejection of a null model must have important consequences for theories about language dynamics if modelling is truly to be worthwhile. Our main claim is that the stochastic process of neutral evolution (also known as genetic drift or random copying) is a viable null model for language dynamics. We survey empirical evidence in favour and against neutral evolution as a mechanism behind historical language changes, highlighting the theoretical implications in each case.