Method to characterize spinons as emergent elementary particles


الملخص بالإنكليزية

We develop a technique to directly study spinons (emergent spin S = 1/2 particles) in quantum spin models in any number of dimensions. The size of a spinon wave packet and of a bound pair (a triplon) are defined in terms of wave-function overlaps that can be evaluated by quantum Monte Carlo simulations. We show that the same information is contained in the spin-spin correlation function as well. We illustrate the method in one dimension. We confirm that spinons are well defined particles (have exponentially localized wave packet) in a valence-bond-solid state, are marginally defined (with power-law shaped wave packet) in the standard Heisenberg critical state, and are not well defined in an ordered Neel state (achieved in one dimension using long-range interactions).

تحميل البحث