The only evidence we have for a discrete reality comes from quantum measurements; without invoking these measurements, quantum theory describes continuous entities. This seeming contradiction can be resolved via analysis that treats measurements as boundary constraints. It is well-known that boundaries can induce apparently-discrete behavior in continuous systems, and strong analogies can be drawn to the case of quantum measurement. If quantum discreteness arises in this manner, this would not only indicate an analog reality, but would also offer a solution to the so-called measurement problem.