Monolithic Microfabricated Symmetric Ion Trap for Quantum Information Processing


الملخص بالإنكليزية

We describe a novel monolithic ion trap that combines the flexibility and scalability of silicon microfabrication technologies with the superior trapping characteristics of traditional four-rod Paul traps. The performace of the proposed microfabricated trap approaches that of the macroscopic structures. The fabrication process creates an angled through-chip slot which allows backside ion loading and through-laser access while avoiding surface light scattering and dielectric charging. The trap geometry and dimensions are optimized for confining long ion chains with equal ion spacing [G.-D. Lin, et al., Europhys. Lett. 86, 60004 (2009)]. Control potentials have been derived to produce linear, equally spaced ion chains of up to 50 ions spaced at 10 um. With the deep trapping depths achievable in this design, we expect that these chains will be sufficiently long-lived to be used in quantum simulations of magnetic systems [E.E. Edwards, et al., Phys. Rev. B 82, 060412(R) (2010)]. The trap is currently being fabricated at Georgia Tech using VLSI techniques.

تحميل البحث