Given a negative $D>-(log X)^{log 2-delta}$, we give a new upper bound on the number of square free integers $<X$ which are represented by some but not all forms of the genus of a primitive positive definite binary quadratic form $f$ of discriminant $D$. We also give an analogous upper bound for square free integers of the form $q+a<X$ where $q$ is prime and $ainmathbb Z$ is fixed. Combined with the 1/2-dimensional sieve of Iwaniec, this yields a lower bound on the number of such integers $q+a<X$ represented by a binary quadratic form of discriminant $D$, where $D$ is allowed to grow with $X$ as above. An immediate consequence of this, coming from recent work of the authors in [BF], is a lower bound on the number of primes which come up as curvatures in a given primitive integer Apollonian circle packing.