Dynamics and Control of Humanoid Robots: A Geometrical Approach


الملخص بالإنكليزية

his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoids configuration manifold, which is a set of all robots active joint angles. Based on the `covariant force law, the general humanoids dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space, while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamics

تحميل البحث