Anomalous Tail Effect on Resistivity Transition and Weak-link Behavior of Iron Based Superconductor


الملخص بالإنكليزية

Temperature dependent resistivity of the iron-based superconductor NdFeAsO0.88F0.12 was measured under different applied fields and excitation currents. Arrhenius plot shows an anomalous tail effect, which contains obvious two resistivity dropping stages. The first is caused by the normal superconducting transition, and the second is supposed to be related to the weak-link between the grains. A model for the resistivity dropping related to the weak-link behavior is proposed, which is based on the Josephson junctions formed by the impurities in grain boundaries like FeAs, Sm2O3 and cracks together with the adjacent grains. These Josephson junctions can be easily broken by the applied fields and the excitations currents, leading to the anomalous resistivity tail in many polycrystalline iron-based superconductors. The calculated resistivity dropping agrees well with the experimental data, which manifests the correctness of the explanation of the obtained anomalous tail effect.

تحميل البحث