The possible values of critical points between strongly congruence-proper varieties of algebras


الملخص بالإنكليزية

We denote by Conc(A) the semilattice of all finitely generated congruences of an (universal) algebra A, and we define Conc(V) as the class of all isomorphic copies of all Conc(A), for A in V, for any variety V of algebras. Let V and W be locally finite varieties of algebras such that for each finite algebra A in V there are, up to isomorphism, only finitely many B in W such that A and B have isomorphic congruence lattices, and every such B is finite. If Conc(V) is not contained in Conc(W), then there exists a semilattice of cardinality aleph 2 in Conc(V)-Conc(W). Our result extends to quasivarieties of first-order structures, with finitely many relation symbols, and relative congruence lattices. In particular, if W is a finitely generated variety of algebras, then this occurs in case W omits the tame congruence theory types 1 and 5; which, in turn, occurs in case W satisfies a nontrivial congruence identity. The bound aleph 2 is sharp.

تحميل البحث