We report on laser-excited angle-resolved photoemission spectroscopy (ARPES) in the electron-doped cuprate Sm(1.85)Ce(0.15)CuO(4-d). The data show the existence of a nodal hole-pocket Fermi-surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferromagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole-pocket is compatible with a d-wave symmetry.