Clustering in anomalous files of independent particles


الملخص بالإنكليزية

The dynamics of classical hard particles in a quasi one-dimensional channel were studied since the 1960s and used for explaining processes in chemistry, physics and biology and in applications. Here we show that in a previously un-described file made of anomalous, independent, particles (with jumping times taken from, {psi}_{alpha} (t) t^(-1-{alpha}), 0<{alpha}<1), particles form clusters. At steady state, the percentage of particles in clusters is about, surd(1-{alpha}^3), only for anomalous {alpha}, characterizing the criticality of a phase transition. The asymptotic mean square displacement per particle in the file is about, log^2(t). We show numerically that this exciting phenomenon of a phase transition is very stable, and relate it with the mysterious phenomenon of rafts in biological membranes, and with regulation of biological channels.

تحميل البحث