Power-law singularities and critical exponents in n-vector models


الملخص بالإنكليزية

Power-law singularities and critical exponents in n-vector models are considered from different theoretical points of view. It includes a theoretical approach called the GFD (grouping of Feynman diagrams) theory, as well as the perturbative renormalization group (RG) treatment. A non-perturbative proof concerning corrections to scaling in the two-point correlation function of the phi^4 model is provided, showing that predictions of the GFD theory rather than those of the perturbative RG theory can be correct. Critical exponents determined from highly accurate experimental data very close to the lambda-transition point in liquid helium, as well as the Goldstone mode singularities in n-vector spin models, evaluated from Monte Carlo simulation results, are discussed with an aim to test the theoretical predictions. Our analysis shows that in both cases the data can be well interpreted within the GFD theory.

تحميل البحث