{mu}SR Study of Spin Dynamics in LiY$_{1-x}$Ho$_{x}$F$_{4}$


الملخص بالإنكليزية

We present zero-field {mu}SR measurements for LiY$_{1-x}$Ho$_{x}$F$_{4}$ samples with x = 0.0017, 0.0085, 0.0406, and 0.0855. We characterize the dynamics associated with the formation of the (F-{mu}-F)$^{-1}$ complex by comparing our data to Monte Carlo simulations to determine the concentration range over which the spin dynamics are determined primarily by the Ho$^{3+}$-{mu} interaction rather than the F-{mu} interaction. Simulations show that F-{mu}-F oscillations should evolve into a Lorentzian Kubo-Toyabe decay for an increasing static magnetic field distribution {Gamma} (i.e., increasing x), but the data do not show this behavior, consistent with the recently reported existence of strong magnetic fluctuations in this system at low temperatures. Anisotropy in the field distribution is shown to cause small errors of order 10% from behavior predicted for an isotropic distribution. Finally, numerical calculations show that values of {Gamma} calculated in the single ion limit greatly exceed the values extracted from curve fits, suggesting that strong correlations play an important role in this system.

تحميل البحث