The AGN NGC 2110 presents a peculiar case among the Seyfert 2 galaxies, as it displays also features of radio-loud objects and is classified as FR-I radio galaxy. Here we analyse simultaneous INTEGRAL and Swift data taken in 2008 and 2009. We reconstruct the spectral energy distribution in order to provide further insight. The combined X-ray spectrum is well represented by an absorbed cut-off power law model plus soft excess. Combining all available data, the spectrum appears flat (photon index 1.25 +- 0.04) with the high-energy cut-off being at 82 +- 9 keV. The intrinsic absorption is moderate (NH = 4E22 1/cm**2), the iron K-alpha line is weak (EW = 114 eV), and no reflection component is detected in the INTEGRAL spectrum. The data indicate that the X-ray spectrum is moderately variable both in flux and spectral shape. The 2008 spectrum is slightly steeper (photon index 1.5, Ec = 90 keV) with the source being brighter, and flatter in 2009 (photon index 1.4, Ec = 120 keV) in the lower flux state. The spectral energy distribution gives a bolometric luminosity of L = 2E44 erg/sec. NGC 2110 appears to be a borderline object between radio loud narrow line Seyfert 1 and radio quiet Seyfert 2. Its spectral energy distribution might indeed be dominated by non-thermal emission arising from the jet.