As a hybrid of techniques from open-loop and feedback control, Lyapunov control has the advantage that it is free from the measurement-induced decoherence but it includes the systems instantaneous message in the control loop. Often, the Lyapunov control is confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time-delay on the Lyapunov control, and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the controlled system. These results suggest that the Lyapunov control is robust gainst time delay, easy to realize and effective for high-dimensional quantum systems.