Organic materials are believed to be potential superconductor with high transition temperature (TC). Organic superconductors mainly have two families: the quasi-one dimensional (TMTSF)2X and two dimensional (BEDT-TTF)2X (Ref. 1 and 2), in which TMTSF is tetramethyltetraselenafulvalene (C10H12Se4) and BEDT-TTF or ET is bis(ethylenedithio)tetrathiafulvalene (C10H8S8). One key feature of the organic superconductors is that they have {pi}-molecular orbitals, and the {pi}-electron can delocalize throughout the crystal giving rise to metallic conductivity due to a {pi}-orbital overlap between adjacent molecules. The introduction of charge into C60 solids and graphites with {pi}-electron networks by doping to realize superconductivity has been extensively reported3,4. Very recently, superconductivity in alkali-metal doped picene with {pi}-electron networks was reported5. Here we report the discovery of superconductivity in potassium doped Phenanthrene with TC~5 K. TC increases with increasing pressure, and the pressure of 1 GPa leads to an increase of 20% in TC, suggesting that the potassium doped phenanthrene shows unconventional superconductivity. Both phenanthrene and picene are polycyclic aromatic hydrocarbons, and contain three and five fused benzene rings, respectively. The ribbon of fused benzene rings is part of graphene. Therefore, the discovery of superconductivity in K3Phenanthrene produces a novel broad class of superconductors consisting of fused hydrocarbon benzene rings with {pi}-electron networks. The fact that TC increases from 5 K for KxPhenanthrene with three benzene rings to 18 K for Kxpicene with five benzene rings suggests that such organic hydrocarbons with long benzene rings is potential superconductor with high TC.