Horizontal Branch evolution, metallicity and sdB stars


الملخص بالإنكليزية

Context. Abundance anomalies have been observed in field sdB stars and in nearly all Horizontal Branch (HB) stars of globular clusters with Teff > 11 000K whatever be the cluster metallicity. Aims. The aim is to determine the abundance variations to be expected in sdB stars and in HB stars of metallicities Z geq 0.0001 and what observed abundances teach us about hydrodynamical processes competing with atomic diffusion. Methods. Complete stellar evolution models, including the effects of atomic diffusion and radiative acceleration, have been computed from the zero age main-sequence for metallicities of Z0 = 0.0001, 0.001, 0.004 and 0.02. On the HB the masses were selected to cover the Teff interval from 7000 to 37000K. Some 60 evolutionary HB models were calculated. The calculations of surface abundance anomalies during the horizontal branch depend on one parameter, the surface mixed mass. Results. For sdB stars with Teff < 37000K and for HB stars with Teff > 11 000K in all observed clusters, independent of metallicity, it was found that most observed abundance anomalies (even up to ~ x 200) were compatible, within error bars, with expected abundances. A mixed mass of ~1.E-7 Modot was determined by comparison with observations. Conclusions. Observations of globular cluster HB stars with Teff > 11 000K and of sdB stars with Teff < 37 000K suggest that most observed abundance anomalies can be explained by element separation driven by radiative acceleration occuring at a mass fraction of ~1.E-7 Modot. Mass loss or turbulence appear to limit the separation between 1.E-7 Modot and the surface.

تحميل البحث