Accretion disk winds are revealed in Chandra gratings spectra of black holes. The winds are hot and highly ionized (typically composed of He-like and H-like charge states), and show modest blue-shifts. Similar line spectra are sometimes seen in dipping low-mass X-ray binaries, which are likely viewed edge-on; however, that absorption is tied to structures in the outer disk, and blue-shifts are not typically observed. Here we report the detection of blue-shifted He-like Fe XXV (3100 +/- 400 km/s) and H-like Fe XXVI (1000 +/- 200 km/s) absorption lines in a Chandra/HETG spectrum of the transient pulsar and low-mass X-ray binary IGR J17480-2446 in Terzan 5. These features indicate a disk wind with at least superficial similarities to those observed in stellar-mass black holes. The wind does not vary strongly with numerous weak X-ray bursts or flares. A broad Fe K emission line is detected in the spectrum, and fits with different line models suggest that the inner accretion disk in this system may be truncated. If the stellar magnetic field truncates the disk, a field strength of B = 0.7-4.0 E+9 Gauss is implied, which is in line with estimates based on X-ray timing techniques. We discuss our findings in the context of accretion flows onto neutron stars and stellar-mass black holes.