Thermoelectric properties of the chemically-doped intermetallic narrow-band semiconductor FeGa3 are reported. The parent compound shows semiconductor-like behavior with a small band gap (Eg = 0.2 eV), a carrier density of ~ 10(18) cm-3 and, a large n-type Seebeck coefficient (S ~ -400 mu V/K) at room temperature. Hall effect measurements indicate that chemical doping significantly increases the carrier density, resulting in a metallic state, while the Seebeck coefficient still remains fairly large (~ -150 mu V/K). The largest power factor (S2/{rho} = 62 mu W/m K2) and corresponding figure of merit (ZT = 0.013) at 390 K were observed for Fe0.99Co0.01(Ga0.997Ge0.003)3.