On the existence of D-solutions of the steady-state Navier-Stokes equations in plane exterior domains


الملخص بالإنكليزية

We prove that the steady--state Navier--Stokes problem in a plane Lipschitz domain $Omega$ exterior to a bounded and simply connected set has a $D$-solution provided the boundary datum $a in L^2(partialOmega)$ satisfies ${1over 2pi}|int_{partialOmega}acdot |<1$. If $Omega$ is of class $C^{1,1}$, we can assume $ain W^{-1/4,4}(partialOmega)$. Moreover, we show that for every $D$--solution $(u,p)$ of the Navier--Stokes equations it holds $ abla p = o(r^{-1}), abla_k p = O(r^{epsilon-3/2}), abla_ku = O(r^{epsilon-3/4})$, for all $kin{Bbb N}setminus{1}$ and for all positive $epsilon$, and if the flux of $u$ through a circumference surrounding $complementOmega$ is zero, then there is a constant vector $u_0$ such that $u=u_0+o(1)$.

تحميل البحث