Infrared spectrum and its implications for the electronic structure of the semiconducting iron selenide K$_{0.83}$Fe$_{1.53}$Se$_2$


الملخص بالإنكليزية

We report an infrared spectroscopy study on K$_{0.83}$Fe$_{1.53}$Se$_2$, a semiconducting parent compound of the new iron-selenide system. The major spectral features are found to be distinctly different from all other Fe-based superconducting systems. Our measurement revealed two peculiar spectral structures: a double peak structure between 4000-6000 cm$^{-1}$ and abundant phonon modes much more than those expected for a 122 structure. We elaborate that those features could be naturally explained from the blocked antiferromagnetism due to the presence of Fe vacancy ordering as determined by recent neutron diffraction experiments. The double peaks reflect the coexistence of ferromagnetic and antiferromagnetic couplings between the neighboring Fe sites.

تحميل البحث