We consider the Dirichlet Laplace operator on open, quasi-bounded domains of infinite volume. For such domains semiclassical spectral estimates based on the phase-space volume - and therefore on the volume of the domain - must fail. Here we present a method how one can nevertheless prove uniform bounds on eigenvalues and eigenvalue means which are sharp in the semiclassical limit. We give examples in horn-shaped regions and so-called spiny urchins. Some results are extended to Schrodinger operators defined on quasi-bounded domains with Dirichlet boundary conditions.