Cosmic Star Formation Activity at z=2.2 Probed by H-alpha Emission Line Galaxies


الملخص بالإنكليزية

We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) which corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of galaxy formation bias at high redshifts.

تحميل البحث