A new approach to the vacuum of inflationary models


الملخص بالإنكليزية

A new approach is given for the implementation of boundary conditions used in solving the Mukhanov-Sasaki equation in the context of inflation. The familiar quantization procedure is reviewed, along with a discussion of where one might expect deviations from the standard approach to arise. The proposed method introduces a (model dependent) fitting function for the z/z and a/a terms in the Mukhanov-Sasaki equation for scalar and tensor modes, as well as imposes the boundary conditions at a finite conformal time. As an example, we employ a fitting function, and compute the spectral index, along with its running, for a specific inflationary model which possesses background equations that are analytically solvable. The observational upper bound on the tensor to scalar ratio is used to constrain the parameters of the boundary conditions in the tensor sector as well. An overview on the generalization of this method is also discussed.

تحميل البحث