Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point


الملخص بالإنكليزية

The presence of a quantum critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T, r) in the vicinity of a QCP, yielding particularly strong variations for varying the tuning parameter r such as pressure or magnetic field B. Here we report on the determination of the critical enhancement of $ delta S / delta B$ near a B-induced QCP via absolute measurements of the magnetocaloric effect (MCE), $(delta T / delta B)_S$, and demonstrate that the accumulation of entropy around the QCP can be used for efficient low-temperature magnetic cooling. Our proof of principle is based on measurements and theoretical calculations of the MCE and the cooling performance for a Cu$^{2+}$-containing coordination polymer, which is a very good realization of a spin-1/2 antiferromagnetic Heisenberg chain - one of the simplest quantum-critical systems.

تحميل البحث