The present paper reviews recent advances in the theory of nonlinear driven magnetohydrodynamic (MHD) waves in slow and Alfven resonant layers. Simple estimations show that in the vicinity of resonant positions the amplitude of variables can grow over the threshold where linear descriptions are valid. Using the method of matched asymptotic expansions, governing equations of dynamics inside the dissipative layer and jump conditions across the dissipative layers are derived. These relations are essential when studying the efficiency of resonant absorption. Nonlinearity in dissipative layers can generate new effects, such as mean flows, which can have serious implications on the stability and efficiency of the resonance.