We analyze photometric data in SDSS-DR7 to infer statistical properties of faint satellites associated to isolated bright galaxies (M_r<-20.5) in the redshift range 0.03<z<0.1. The mean projected radial profile shows an excess of companions in the photometric sample around the primaries, with approximately a power law shape that extends up to ~700kpc. Given this overdensity signal, a suitable background subtraction method is used to study the statistical properties of the population of bound satellites, down to magnitude M_r=-14.5, in the projected radial distance range 100 < r_p/kpc < 3 R_{vir}. We have also considered a color cut consistent with the observed colors of spectroscopic satellites in nearby galaxies so that distant redshifted galaxies do not dominate the statistics. We have tested the implementation of this procedure using a mock catalog. We find that the method is effective in reproducing the true projected radial satellite number density profile and luminosity distributions, providing confidence in the results derived from SDSS data. The spatial extent of satellites is larger for bright, red primaries. Also, we find a larger spatial distribution of blue satellites. For the different samples analyzed, we derive the average number of satellites and their luminosity distributions down to M_r=-14.5. The mean number of satellites depends very strongly on host luminosity. Bright primaries (M_r<-21.5) host on average ~6 satellites with M_r<-14.5, while primaries with -21.5<M_r<-20.5 have less than 1 satellite per host. We provide Schechter function fits to the luminosity distributions of satellite galaxies with faint-end slopes -1.3+/-0.2. This shows that satellites of bright primaries lack an excess population of faint objects, in agreement with the results in the Milky Way and nearby galaxies.