The XMM-Newton X-ray Spectra of the Most X-ray Luminous Radio-quiet ROSAT Bright Survey-QSOs: A Reference Sample for the Interpretation of High-redshift QSO Spectra


الملخص بالإنكليزية

We present the broadband X-ray properties of four of the most X-ray luminous (L_X >= 10^{45} erg/s in the 0.5-2 keV band) radio-quiet QSOs found in the ROSAT Bright Survey. This uniform sample class, which explores the extreme end of the QSO luminosity function, exhibits surprisingly homogenous X-ray spectral properties: a soft excess with an extremely smooth shape containing no obvious discrete features, a hard power law above 2 keV, and a weak narrow/barely resolved Fe K-alpha fluorescence line for the three high signal-to-noise ratio (S/N) spectra. The soft excess can be well fitted with only a soft power law. No signatures of warm or cold intrinsic absorbers are found. The Fe K-alpha centroids and the line widths indicate emission from neutral Fe (E=6.4 keV) originating from cold material from distances of only a few light days or further out. The well-constrained equivalent widths (EW) of the neutral Fe lines are higher than expected from the X-ray Baldwin effect which has been only poorly constrained at very high luminosities. Taking into account our individual EW measurements, we show that the X-ray Baldwin effect flattens above L_X ~ 10^{44} erg/s (2-10 keV band) where an almost constant <EW> of ~100 eV is found. We confirm the assumption of having very similar X-ray AGN properties when interpreting stacked X-ray spectra. Our stacked spectrum serves as a superb reference for the interpretation of low S/N spectra of radio-quiet QSOs with similar luminosities at higher redshifts routinely detected by XMM-Newton and Chandra surveys.

تحميل البحث