A framework for proving the self-organization of dynamic systems


الملخص بالإنكليزية

This paper aims at providing a rigorous definition of self- organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classes of self-organization through liveness and safety properties that both capture information re- garding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pas- try) and the others are specific implementations of Omega (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems.

تحميل البحث