Computing Eigenfunctions on the Koch Snowflake: A New Grid and Symmetry


الملخص بالإنكليزية

In this paper we numerically solve the eigenvalue problem $Delta u + lambda u = 0$ on the fractal region defined by the Koch Snowflake, with zero-Dirichlet or zero-Neumann boundary conditions. The Laplacian with boundary conditions is approximated by a large symmetric matrix. The eigenvalues and eigenvectors of this matrix are computed by ARPACK. We impose the boundary conditions in a way that gives improved accuracy over the previous computations of Lapidus, Neuberger, Renka & Griffith. We extrapolate the results for grid spacing $h$ to the limit $h rightarrow 0$ in order to estimate eigenvalues of the Laplacian and compare our results to those of Lapdus et al. We analyze the symmetry of the region to explain the multiplicity-two eigenvalues, and present a canonical choice of the two eigenfunctions that span each two-dimensional eigenspace.

تحميل البحث