Using a recent catalogue of extragalactic Faraday rotation derived from the NRAO VLA Sky Survey we have found an agreement between Faraday rotation structure and the HI emission structure of a High Velocity Cloud (HVC) associated with the Leading Arm of the Magellanic System. We suggest that this morphological agreement is indicative of Faraday rotation through the HVC. Under this assumption we have used 48 rotation measures through the HVC, together with estimates of the electron column density from H-alpha measurements and QSO absorption lines to estimate a strength for the line-of-sight component of the coherent magnetic field in the HVC of <B_{||}> > 6 {rm mu G}$. A coherent magnetic field of this strength is more than sufficient to dynamically stabilize the cloud against ram pressure stripping by the Milky Way halo and may also provide thermal insulation for the cold cloud. We estimate an upper limit to the ratio of random to coherent magnetic field of $B_{r}/B_{||} < 0.8$, which suggests that the random field does not dominate over the coherent field as it does in the Magellanic Clouds from which this HVC likely originates.