Morphological dilation image coding with context weights prediction


الملخص بالإنكليزية

This paper proposes an adaptive morphological dilation image coding with context weights prediction. The new dilation method is not to use fixed models, but to decide whether a coefficient needs to be dilated or not according to the coefficients predicted significance degree. It includes two key dilation technologies: 1) controlling dilation process with context weights to reduce the output of insignificant coefficients, and 2) using variable-length group test coding with context weights to adjust the coding order and cost as few bits as possible to present the events with large probability. Moreover, we also propose a novel context weight strategy to predict coefficients significance degree more accurately, which serves for two dilation technologies. Experimental results show that our proposed method outperforms the state of the art image coding algorithms available today.

تحميل البحث