On the alignment of debris disks and their host stars rotation axis -implications for spin-orbit misalignment in exoplanetary systems


الملخص بالإنكليزية

It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disk, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disk was well-aligned with the host star. Recent work by a number of authors has challenged this assumption by proposing mechanisms that act to drive the star-disk interaction out of alignment during the pre-main sequence phase. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.

تحميل البحث