Atomic Imaging Using Secondary Electrons in a Scanning Transmission Electron Microscope : Experimental Observations and Possible Mechanisms


الملخص بالإنكليزية

We report our detailed investigation of high-resolution imaging using secondary electrons (SE) with a subnanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular-dark-field (ADF) images simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we study the SE image intensity and contrast as a function of applied bias, atomic number, crystal tilt and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. Possible mechanisms for atomicscale SE imaging are proposed. The ability to image both the surface and bulk of a sample at atomic scale is unprecedented, and could revolutionize the field of electron microscopy and imaging.

تحميل البحث