We discuss fluctuations near the second order phase transition where the free energy has an additional non-Hermitian term. The spectrum of the fluctuations changes when the odd-parity potential amplitude exceeds the critical value corresponding to the PT-symmetry breakdown in the topological structure of the Hilbert space of the effective non-Hermitian Hamiltonian. We calculate the fluctuation contribution to the differential resistance of a superconducting weak link and find the manifestation of the PT-symmetry breaking in its temperature evolution. We successfully validate our theory by carrying out measurements of far from equilibrium transport in mesoscale-patterned superconducting wires.