Entanglement Entropy of Random Fractional Quantum Hall Systems


الملخص بالإنكليزية

The entanglement entropy of the $ u = 1/3$ and $ u = 5/2$ quantum Hall states in the presence of short range random disorder has been calculated by direct diagonalization. A microscopic model of electron-electron interaction is used, electrons are confined to a single Landau level and interact with long range Coulomb interaction. For very weak disorder, the values of the topological entanglement entropy are roughly consistent with expected theoretical results. By considering a broader range of disorder strengths, the fluctuation in the entanglement entropy was studied in an effort to detect quantum phase transitions. In particular, there is a clear signature of a transition as a function of the disorder strength for the $ u = 5/2$ state. Prospects for using the density matrix renormalization group to compute the entanglement entropy for larger system sizes are discussed.

تحميل البحث