The impact of anisotropy from finite light travel time on detecting ionized bubbles in redshifted 21-cm maps


الملخص بالإنكليزية

The detection of ionized bubbles around quasars in redshifted 21-cm maps is possibly one of the most direct future probes of reionization. We consider two models for the growth of spherical ionized bubbles to study the apparent shapes of the bubbles in redshifted 21-cm maps, taking into account the finite light travel time (FLTT) across the bubble. We find that the FLTT, whose effect is particularly pronounced for large bubbles, causes the bubbles image to continue to grow well after its actual growth is over. There are two distinct FLTT distortions in the bubbles image: (i) its apparent center is shifted along the line of sight (LOS) towards the observer from the quasar; (ii) its shape is anisotropic along the LOS. The bubble initially appears elongated along the LOS. This is reversed in the later stages of growth where the bubble appears compressed. The FLTT distortions are expected to have an impact on matched filter bubble detection where it is most convenient to use a spherical template for the filter. We find that the best matched spherical filter gives a reasonably good estimate of the size and the shift in the center of the anisotropic image. The mismatch between the spherical filter and the anisotropic image causes a 10 - 20% degradation in the SNR relative to that of a spherical bubble. We conclude that a spherical filter is adequate for bubble detection. The FLTT distortions do not effect the lower limits for bubble detection with 1000 hr of GMRT observations. The smallest spherical filter for which a detection is possible has comoving radii 24 Mpc and 33 Mpc for a 3-sigma and 5-sigma detection respectively, assuming a neutral fraction 0.6 at z sim 8.

تحميل البحث