Numerical integration of variational equations


الملخص بالإنكليزية

We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom, and investigate their efficiency in accurately reproducing well-known properties of chaos indicators like the Lyapunov Characteristic Exponents (LCEs) and the Generalized Alignment Indices (GALIs). We find that the best numerical performance is exhibited by the textit{`tangent map (TM) method}, a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamiltons equations of motion by the repeated action of a symplectic map $S$, while the corresponding tangent map $TS$, is used for the integration of the variational equations. A simple and systematic technique to construct $TS$ is also presented.

تحميل البحث