Rank rigidity for CAT(0) cube complexes


الملخص بالإنكليزية

We prove that any group acting essentially without a fixed point at infinity on an irreducible finite-dimensional CAT(0) cube complex contains a rank one isometry. This implies that the Rank Rigidity Conjecture holds for CAT(0) cube complexes. We derive a number of other consequences for CAT(0) cube complexes, including a purely geometric proof of the Tits Alternative, an existence result for regular elements in (possibly non-uniform) lattices acting on cube complexes, and a characterization of products of trees in terms of bounded cohomology.

تحميل البحث